
RECURSION

Problem Solving with Computers-I



Stack & Heap Example

int *x;
int y = 5;
x = &y;

int *z = new int;
*z = 7;

400

x
200

5

y
400

700

z
320

7
700

HeapStack



Midterm 2 Question 7a
T findBestElement(T arr[], int size) {
// …

T guess = arr[0];
for (int i = 1; i < size; i++) {
if (betterThan(arr[i], guess))
guess = arr[i];

}

return guess;
}

bool betterThan(T a, T b);

• T could be any type (int, bool, 
TideLevel, etc.)



Thinking recursively!
• Many structures in nature and CS that are recursive
• A recursive solution to a problem is all about describing the 

problem in terms of a smaller version of itself!



Thinking recursively!
1.  Base case: solve the smallest version(s) of the problem
2. Recursive case: describe the problem in terms of itself!

• Assume you have a solution for a smaller input size!     
• Describe the problem in terms of a smaller version of itself.

Example problem: Print all the elements of a linked-list backwards!

head

What is the smallest version of this problem?



Step 1: Base case! 
//Write code for the smallest version of the problem
void printBackwards(Node * head) {

}



Step 2: Write the recursive case!
• Assume you have a solution for a smaller version of the problem!!!! 
• Describe the problem in terms of a smaller version of itself 

void printBackwards(Node * head){
if (head == NULL)  //Base case

return;

}

head

Q: What is the right order?

(A) Print the head’s data, then make 
the recursive call

(B) Make the recursive call, then print 
the head’s data



Example 2: Find the sum of the elements of a linked-list

head



Step 1: Base case! 
• Write code for the smallest version of the problem

int sum(Node * head) {

}



Step 2: Write the recursive case !
• Assume you have a solution for a smaller version of the problem!!!! 
• Describe the problem in terms of a smaller version of itself 
void sum(Node * head){

if (head == NULL)  //Base case

}

head



name ‘B’  ‘o’    ‘n’    ‘d’  ‘0’   ‘0’    ‘7’

void printElementsBackwards(char *arr, int len){

if(len<=0){ //Base case 
return;

}
//Write your code here

}

Example 3: Backwards with arrays



Anagrams and Palindromes

Diba == Adib
Rats and Mice == In cat's dream
Waitress == A stew, Sir?

bool isAnagram(string s1, string s2)

bool isPalindrome(const string s1) //recursive

deTartraTED
WasItACarOrACatISaw

bool isPalindrome(const char *s1) //recursive

Why don’t we pass the length of the string?

bool isPalindromeIterative(const char *s1) //iterative


