RECURSION

Problem Solving with Computers-I




Stack & Heap Example

int *x; )2(00
inty = 95;

y
int *z = new int; 400

*z=1;

H

320

700

Stack | Heap

700



Midterm 2 Question 7a
o T Id b t int, bool,
T findBestElement(T arr[], int size) { Tigglljeveﬁ zg) ype (int, boo
/...

T guess = arr|[0];
for (inti=1:i < size; i++) { bool betterThan(T a, T b);
If (betterThan(arr[i], guess))
guess = arrli];

J

return guess;

}



L
Thinking recursively!

* Many structures in nature and CS that are recursive
* Arecursive solution to a problem is all about describing the
problem in terms of a smaller version of itself!

Keys to recursion:

1. the problem must get smaller
2. the problem can’t get smaller forever



Thinking recursively!

1. Base case: solve the smallest version(s) of the problem
2. Recursive case: describe the problem in terms of itself!
* Assume you have a solution for a smaller input size!
* Describe the problem in terms of a smaller version of itself.

Example problem: Print all the elements of a linked-list backwards!

e ar=an

What is the smallest version of this problem?




Step 1: Base case!

//\Write code for the smallest version of the problem
void printBackwards(Node * head) {



Step 2: Write the recursive case!

- Assume you have a solution for a smaller version of the problem!!!!
- Describe the problem in terms of a smaller version of itself

void printBackwards(Node * head){ Q: What is the right order?
It (head == NULL) //Base case (A) Print the head’s data, then make

return; the recursive call
(B) Make the recursive call, then print
the head’s data

S rC G




Example 2: Find the sum of the elements of a linked-list

head \

CD~-CD—~CDY




Step 1: Base case!

- Write code for the smallest version of the problem
int sum(Node * head) {



Step 2: Write the recursive case !

- Assume you have a solution for a smaller version of the problem!!!!
- Describe the problem in terms of a smaller version of itself
void sum(Node * head){
if (head == NULL) //Base case

X =D




L
Example 3: Backwards with arrays

name \BI \OI \nl \d/ \OI \OI \'7’

void printElementsBackwards(char xarr, int len){

if(len<=0){ //Base case
return;
¥

//Write your code here



Anagrams and Palindromes

bool isAnagram(string sl1, string s2) sy

Diba == Adib
Rats and Mice == In cat's dream
Waitress == A stew, Sir?

hool 1s
hool 1s

hool 1s

ITRMR RV C

Palindrome(const string sl1) //recursive
Palindrome(const char xsl1) //recursive

PalindromeIterative(const char xsl1) //iterative

deTartraTED
WasltACarOrACatlSaw Why don’t we pass the length of the string?



