
LINKED LISTS (CONTD)
DYNAMIC MEMORY PROBLEMS

Problem Solving with Computers-I

Review:
What are the ‘links’ in a linked-list?

head taillist

Iterating through the list
int lengthOfList(LinkedList *list) {

???
}

head taillist

Delete node 2 in the list
head taillist

Dynamic memory allocation
• To allocate memory on the heap use the ‘new’ operator
• To free the memory use delete

int *p= new int;
delete p;

5

Dangling pointers and memory leaks

• Dangling pointer: Pointer points to a memory location that
no longer exists (premature free—you freed the memory too
early)

• Memory leaks (tardy free—you’re freeing the memory too
late, or not at all)
• Heap memory not deallocated before the end of program (more strict

definition, potential problem)
• Heap memory that can no longer be accessed (definitely a leak,

must be avoided!)

Dynamic memory pitfall: Memory Leaks
• Memory leaks

Does calling foo() result in a memory leak? A. Yes B. No

void foo(){
int *p = new int;

}

Q: Which of the following functions results in a dangling
pointer?

int* f1(int num){
int *mem1 =new int[num];
return(mem1);

}

A. f1
B. f2
C. Both

int* f2(int num){
int mem2[num];
return(mem2);

}

Deleting the list

head taillist

(A) (B)

(C) All nodes of the linked list

(D) B and C
(E) All of the above

int freeLinkedList(LinkedList *list) {…}

Which data objects are deleted by the statement: delete list;

Does this result in a memory leak?

Delete the list
int freeLinkedList(LinkedList *list);

head taillist

