
DYNAMIC MEMORY ALLOCATION
LINKED LISTS

Problem Solving with Computers-I



Review: Structs, arrays of structs



Program layout in memory at runtime
3

0
1
2
3
4
5
6
7
8
9
10

Global variables

Text
Low address

High address

Dynamic memory

A generic model for memory

Stack

Heap



Creating data on the heap: new and delete
4

Global variables

Text
Low address

High address

Dynamic memory

void foo() {
int *n = NULL;
n = new int;
*n = 10;

int *arr = new int[5];
arr[0] = arr[1] = … = arr[4] = 42;

delete n;
delete[] arr;

}

Stack

Heap



Linked Lists
5

Linked List

Array List1 2 3

A local variable called “head” 
stores a pointer to the start of
the list.



Accessing elements of a list

Assume the linked list has already been created, what do the following 
expressions evaluate to?
1. head->data
2. head->next->data
3. head->next->next->data
4. head->next->next->next->data

A. 1
B. 2
C. 3
D. NULL
E. Run time error

head

struct Node {
int data;
Node *next;  

};



Creating a small list
7

• Define an empty list
• Add a node to the list with data = 10

struct Node {
int data;
Node *next;  

};



Building a list from an array 
LinkedList* arrayToLinkedList(int a[], int size);

1 2 3

a



Iterating through the list
int lengthOfList(LinkedList * list) {

/* Find the number of elements in the list */

}

head tail

list



Deleting the list
int freeLinkedList(LinkedList * list) {

/* Free all the memory that was created on the heap */

}

head tail

list


