
POINTER ARITHMETIC
ARRAYS, POINTERS AND STRUCTS

Problem Solving with Computers-I

Two important facts about Pointers
2

1) A pointer can only point to one type –(basic or derived) such as int,
char, a struct, another pointer, etc.

2) After declaring a pointer: int *ptr;
ptr doesn’t actually point to anything yet. We can either:
Ø make it point to something that already exists, or
Ø allocate room in memory for something new that it will point to
Ø Null check before dereferencing

§ ar is a pointer to the first element
§ ar[0] is the same as *ar
§ ar[2] is the same as *(ar+2)

ar

100 104 108 112 116

20 30 50 80 90

§ Use pointers to pass arrays in functions
§ Use pointer arithmetic to access arrays more conveniently

Arrays and pointers

Pointer Arithmetic
int arr[]={50, 60, 70};
int *p;
p = arr;
p = p + 1;
*p = *p + 1;

Passing arrays to functions
int main(){
int arr[]={50, 60, 70};

}
int sum(int b[], int len){

}
Code to demonstrate how
arrays are passed to
functions

Which of the following is true after IncrementPtr(q)is called
in the above code:

void IncrementPtr(int *p){
p++;

}

50 60 70
arr

qint arr[3] = {50, 60, 70};
int *q = arr;
IncrementPtr(q);

A. q points to the next element in the array with value 60
B. q points to the first element in the array with value 50

How should we implement IncrementPtr(),so that ‘q’ points to 60
when the following code executes?

void IncrementPtr(int **p){
p++;

}

50 60 70
arr

qint arr[3] = {50, 60, 70};
int *q = arr;
IncrementPtr(&q);

A. p = p + 1;

B. &p = &p + 1;

C. *p= *p + 1;

D. p= &p+1;

Demo
• In class demo to show how you would create an array of structs, initialize them

and pass the array to a function

Pointer Arithmetic Question
How many of the following are invalid?
I. pointer + integer (ptr+1)
II. integer + pointer (1+ptr)
III. pointer + pointer (ptr + ptr)
IV. pointer – integer (ptr – 1)
V. integer – pointer (1 – ptr)
VI. pointer – pointer (ptr – ptr)
VII. compare pointer to pointer (ptr == ptr)
VIII. compare pointer to integer (1 == ptr)
IX. compare pointer to 0 (ptr == 0)
X. compare pointer to NULL (ptr == NULL)

#invalid
A: 1
B: 2
C: 3
D: 4
E: 5

Pointer Arithmetic

§What if we have an array of large structs (objects)?
§C++ takes care of it: In reality, ptr+1 doesn’t add 1 to the

memory address, but rather adds the size of the array
element.

§C++ knows the size of the thing a pointer points to – every
addition or subtraction moves that many bytes: 1 byte for a
char, 4 bytes for an int, etc.

Complex declarations in C/C++
How do we decipher declarations of this sort?
int **arr[];

Read
* as “pointer to” (always on the left of identifier)
[] as “array of” (always to the right of identifier)
() as “function returning” (always to the right …)

11

For more info see:
http://ieng9.ucsd.edu/~cs30x/rt_lt.rule.html

Complex declarations in C/C++

Right-Left Rule
int **arr [];

Step 1: Find the identifier
Step 2: Look at the symbols to the right of the identifier. Continue right until you
run out of symbols *OR* hit a *right* parenthesis ")"
Step 3: Look at the symbol to the left of the identifier. If it is not one of the
symbols ‘*’, ‘(), ‘[]’ just say it. Otherwise, translate it into English using the table
in the previous slide. Keep going left until you run out of symbols *OR* hit a
left parenthesis "(".
Repeat steps 2 and 3 until you've formed your declaration.

12

Illegal combinations include:

[]() - cannot have an array of functions
()() - cannot have a function that returns a
function
()[] - cannot have a function that returns an array

Complex declarations in C/C++

13

int i;
int *i;
int a[10];
int f();
int **p;
int (*p)[];
int (*fp) ();
int *p[];
int af[]();
int *f();
int fa()[];
int ff()();
int (**ppa)[];
int (*apa[])[] ;

(see https://cdecl.org/)

