POINTER ARITHMETIC
ARRAYS, POINTERS AND STRUCTS

Problem Solving with Computers-| ++
(: L GitHub
t:,f:: nil*“jej":ace " " @

/1|

Two important facts about Pointers

1) A pointer can only point to one type —(basic or derived) such as int,
char, a struct, another pointer, etc.

2) After declaring a pointer: int *ptr;
ptr doesn’t actually point to anything yet. We can either:
» make it point to something that already exists, or
» allocate room 1n memory for something new that it will point to

» Null check before dereferencing

Arrays and pointers

100 104 108 112 116
20 | 30 50 | 80 | 90

ar

= ar is a pointer to the first element
o ar[0] 1s the same as *ar
o ar[2] 1sthe same as * (ar+2)

= Use pointers to pass arrays in functions

= Use pointer arithmetic to access arrays more conveniently

Pointer Arithmetic
int arr[]={50, 60, 70};

int *p;
p = arr;
p=p+1;

*p = *p + 1;

L
Passing arrays to functions

int main () {
int arr[]={50, 60, 70};

}

int sum(int b[], int len) {

Code to demonstrate how
arrays are passed to
} functions

void IncrementPtr(int *p){
p++;

¥

int arr[3] = {50, 60, 70}; ql
int *q = arr;
IncrementPtr(q);

50 | 60 | 70

arr

Which of the following 1s true after IncrementPtr (q) is called
1n the above code:

A. g points to the next element in the array with value 60

B. g points to the first element in the array with value 50

How should we implement IncrementPtr (), so that ‘q’ points to 60
when the following code executes?

void IncrementPtr(int **p){

p++;
}
int arr[3] = {50, 60, 70};
int *g = arr; 1
IncrementPtr(&q); 1
A p= p+1; 50 60 70
B. &p = &p + 1; art
C. *p= *p + 1;
D. p= &p+l;

Demo

- In class demo to show how you would create an array of structs, initialize them
and pass the array to a function

Pointer Arithmetic Question

How many of the following are invalid?

. pointer + integer (ptr+1)

. integer + pointer (1+ptr) #invalid
lll. pointer + pointer (ptr + ptr)

V. pointer — integer (ptr — 1)

V. integer — pointer (1 — ptr)

VI. pointer — pointer (ptr — ptr)

VIl. compare pointer to pointer (ptr == ptr)
VIIl. compare pointer to integer (1 == ptr)

IX. compare pointer to O (ptr == 0)

X. compare pointer to NULL (ptr == NULL)

HOQWP
o wh R

L
Pointer Arithmetic

= What if we have an array of large structs (objects)?

= C++ takes care of it: In reality, ptr+1 doesn’t add 1 to the
memory address, but rather adds the size of the array
clement.

= C++ knows the size of the thing a pointer points to — every
addition or subtraction moves that many bytes: 1 byte for a
char, 4 bytes for an 1nt, etc.

Complex declarations in C/C++

How do we decipher declarations of this sort?
int **arrf[];

Read

* as “pointer to” (always on the left of identifier)
[] as "array of” (always to the right of identifier)
() as “function returning” (always to the right ...)

For more info see:

http:/ /ieng9.ucsd.edu/~cs30x/rt_lt.rule.html

Complex declarations in C/C++

lllegal combinations include:

Right-Left Rule

int **arr []; []() - cannot have an array of functions
()() - cannot have a function that returns a
function
Step 1: Find the identifier ()[] - cannot have a function that returns an array

Step 2: Look at the symbols to the right of the identifier. Continue right until you
run out of symbols *OR* hit a *right* parenthesis ")"

Step 3: Look at the symbol to the left of the identifier. If it is not one of the
symbols ', (), [] just say it. Otherwise, translate it into English using the table
in the previous slide. Keep going left until you run out of symbols *OR* hit a
left parenthesis "(".

Repeat steps 2 and 3 until you've formed your declaration.

Complex declarations in C/C++

int 1i;
int *1i;
int af[l0];
int f£();

int **p;

int (*p
int (*f
int *p[
int af]
int *f(
int fa(
int ff(
int (**p
int (*ap

(see https://cdecl.org/)

